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The Inverse Scattering Problem
for Acoustic Waves*

by

David Colton

All important decisions must be made on the basis
of insufficient data - If You Meet the Buddha on
the Road, Kill Him! by Sheldon Kopp

I. Introduction.

In this paper we shall survey recent progress and discuss

open problems connected with the inverse scattering problem for

acoustic waves. However before proceeding it is first necessary

to be more precise on what we mean by "the inverse scattering

problem" since this phrase has been used to describe a large

variety of problems concerned with target identification in acous-

tic wave propagation. We first make a distinction between

"scatteringe and "diffraction" and note that the latter is basically

a high frequency phenomena whereas the former is more accurately

applied to low and intermediate values of the frequency. Hence- in

this paper we shall not discuss any of the important new results

on the' winverse diffraction problem'S'but instead refer the reader

to the recent paper of Brian Sleeman for a survey of these results

([-191). We shall further restrict our attention to the scattering

of a plane time harmonic wave by a fixed bounded obstacle situated

in a homogeneous medium and in particular to determine information

* This research was supported in part by AFOSR Grant 79-0085.
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about this obstacle from a knowledge of the asymptotic behavior

of the scattered wave. Hence)we are excluding such topics as

the scattering of waves by moving obstacles, the determination

of the speed of sound in a non-homogeneous medium, and the loca-

tion of equivalent sources. Finally, we shall only be concerned

with determining two basic properties of the scattering obstacle,

viz, its shape and/or its surface impedance.~ We note that

although the problem of determining the shape of an obstacle from

far field measurements has long been recognized as a basic problem

in a variety of areas of technology such as radar, sonar, and

tomography, the inverse impedance problem has received less atten-

tion. Nevertheless the inverse impedance problem is of basic

importance in many applications since it gives information on the

material composition of the unknown scattering object, e.g. in

the case of sonar it can help answer the auestion of whether or

not the scattering obstacle is a whale or a submarine.

The inverse scattering problem, as defined above, is

particularly difficult to solve for two reasons: it is

(1) nonlinear and (2) improperly posed. Of these two reasons

it is perhaps the latter that creates the most difficulty. In-

deed we shall see shortly that for a given measured far field

pattern in general no solution exists to the inverse scattering

~,jI problem, and if a solution does exist it does not depend con-
tinuously on the measured data. Hence before we can begin to

construct a solution to the inverse scattering problem we must

answer the question of what we mean by a "solution". At this

point it is worthwhile recalling the remark of Lanczos: "A lack

of information cannot be remedied by any mathematical trickery".
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Hence in order to determine what we mean by a solution it is

necessary to introduce "nonstandard" information that reflects

the physical situation we are trying to model. Having resolved

the question of what is meant by a solution, we then have to

actually construct this solution, and this is complicated not

only by the fact that the problem is nonlinear, but also the

fact that the above mentioned "nonstandard" information has been

incorporated into the mathematical model.

We shall now give a mathematical formulation of the inverse

scattering problem and outline the specific topics we want to

discuss in this paper. We shall formulate our problem in I 2 and

state, when appropriate, the necessary modifications that are

needed to consider the full three dimensional problem. Let D be

a bounded, simply connected domain in 12 with smooth boundary D

and unit outward normal v. If we let X = X(x) > 0 denote the

continuous surface impedance of aD and k>0 the wave number, then

the impedance boundary value problem for acoustic waves can be

mathematically formulated as the problem of finding a function
u C 2 ( 1 2 \ U) ncl( 2 \D) such that

u M ui + us in 12\D (1.1a)

A2 u + k 2u - 0 in 1 2 \f (1.1b)

au u u- 0 on D (l.lc)

lim k rO1/2  a i 8 0 (1.1)
T --F--k s -0(~
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where the "incoming wave" ui is an entire solution of the

Helmholtz equation (1.lb) and the "scattered wave" us satisfies

the radiation condition (l.ld) uniformly with respect to e where

(r,e) are polar coordinates. We shall also consider the case

when X is infinite, i.e. the boundary condition (1.1c) becomes

u = 0 on DD. (1.1c')

In this case we shall refer to the scattering obstacle as being

"soft". The existence and uniaueness of a solution to (l.la)-

(1.1d) and (1.1a), (l.lb), (1.1c'), (1.1d) is well known

(c.f. [10]). We shall see shortly that if u is a solution of

(1.1a)-(l.ld) (or (1.1a), (l.lb), (1.1c'), (1.1d) then us has

the asymptotic behavior

uS(r,e) = eikr r-1/ 2F(8;k)+0(r-3/2) (1.2)

where F is known as the far field pattern corresponding to the

igiven incoming wave ui . The inverse scattering problems we shall

discuss in this paper are (1) given a knowledge of u1 , F and D,

find X, or (2) given a knowledge of ui , F and the boundary condi-

tion (l.lc'), find D. We shall be more precise on what we mean

by a "knowledge" of F shortly, but as mentioned above we in general

only know F from measurements which are by definition inexact and

this fact makes both of the above inverse scattering problems

improperly posed. The basic fact we begin with is that the

existence of a unique solution to the direct scattering problem

(1.1a)-(l.ld) or (1.1a), (1.1b), (1.1c), (1.1d) by the method

of integral equations (c.f. [101) defines a (nonlinear) mapping

- ..- -
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T from D or A to F. Hence from an abstract point of view we can

state our tasks as follows:

(1) Determine the range of T (denoted by R(T)) as a subset of

L2 [0,2w].

(2) Establish the existence of T on R(T), i.e. show the

uniqueness of the solution to the inverse scattering

prob lem-

(3) Determine a subset XcR(T) and an operator T defined on

L [0,27] such that T- = T 1 on X and T- is continuous

on L 2[0,2w], i.e. stabilize the inverse scattering problem

(In order to do this it is necessary to assume a priori

information about D or A).

(4) Give a constructive method for determining Tx,xEX.

We shall examine what is known about the above four

problems in the following sections and in addition give directions

that should be taken if further progress is to be achieved.

II. The Mapping T and its Range.

As mentioned in the Introduction we can obtain the solution

of (l.la)-(l.ld) (or the corresponding problem with Dirichlet

boundary condition (1.1c)) by the method of integral equations.

In particular we can represent the solution us of (l.la)-(l.ld)

in the form of a modified single layer potential

u ( *(y)G(xy)ds(y) xE12\f (2.1)us (x) . .. . .(2.1
aD
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where G is an appropriately chosen fundamental solution ([221)

and p is the unique solution of an integral equation of the form

+ KI' + XK2 = au + Ui  (2.2)

where K1 and K2 are compact integral operators that are indepen-

dent of X and defined on C(3D). The solution of the corresponding

Dirichlet problem can be represented in the form of a double

layer potential ([22])

u1(x) 0y) a G(x,y)ds(y) ; XER2 \ (2.3)

D

where ' is the unique soluton of an integral equation of the form

+ K = u (2.4)

where K 3 is a compact integral operator defined on C(aD). If in

(2.1), (2.2) or (2.3), (2.4) we now let r= lxi tend to infinity

and use the asymptotic behavior of G(x,y) we obtain the relation-

ship (1.2) and the mapping T:X-F or T:aD-F. In particular such

a calculation establishes the validity of the following theorem:

Theorem 1: The far field pattern is an entire function of e and

a continuous function of k for k>0.

The above analysis shows both the nonlinear nature of the operator

T as well as the fact that R(T)#L (0,2w]. Furthermore since it is

not possible to determine the analyticity of a function from

inexact measurements, Theorem 1 implies that in general for a given

measured far field pattern no solution exists to the inverse

scattering problem unless further assumptions are made.
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From (2.2) or (2.4) it is clear that the onerator T depends
ii

on u , i.e. T=T(u i). We can therefore pose the following auestion:

If ui ranges over all entire solutions of the Helmholtz equations

where X or D is kept fixed, is the corresponding set of far field

patterns dense in L 2[0,27], or more concisely, does A-MT=L2[0,21T1.

The following example shows that this is not true in general.

Example: Consider problem (l.la), (l.lb), (l.lc), (l.ld) when D

is the unit disk. Then since u is an entire solution of the

Helmholtz equation we can expand u in the form

i7u (r,e) = E J (kr)[an cos ne + bn sin nel (2.5)
n= n n

where Jn denotes Bessel's function and the series (2.5) is uniformly
n2

convergent on any compact subset of 2. Then for r>l we can expand

us in the uniformly convergent series

FJn(k)
uS(r,e) - H(1) (kr) in (a cos ne + bn sin ne] (2.6)

n=O n H(i) (k)

n

where H 1)denotes Hankel's function of the first kind and from
n

the asymptotic behavior of Hankel's function we have that the far

field pattern for us is given by

n (a cos ne + b sin nO] (2.7)
irk n= H 1 (k) n n

n

If k 2 is an eigenvalue of the interior Dirichlet problem then

00Jn(k)-0 for some integer n-no and hence in this case F(8;k

is orthogonal to cos no8 and sin n0  for all incident fields

u Hence the class of far field patterns for such values of k

2
is not dense in L [0,27r].
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It is an open question to determine if similar examples

are valid for arbitrary domains D. If such examples exist this

would establish an interesting relationship between the far field

patterns of exterior boundary value problems for the Helmholtz

equation and the (interior) eigenvalue problem for Laplace's

equation.

The validity of the above example is based on the fact

that the set

n(kr) cos ne ;n= 0,1,2,... (2.8
J (kr) sin ne

is incomplete in L2(0D) if k is eigenvalue of the interior

Dirichlet problem. However it can be shown ([51; a simpler

proof can be based on the ideas of [131) that the set

( + ikX) Jn(kr) cos ne
n ; n=0,1,2,... (2.9)

+ ikx) Jn(kr) sin n8

is complete in L (OD) for arbitrary bounded domains provided

O<A<- where X is a constant. This fact implies the following

theorem ([51):

Theorem 2: Let X be a constant such that O<X<. Then RT)=

SL2 [0,27r] .

A wealth of questions concerning R(T) remain unanswered

and this provides a major mathematical challenge of basic impor-

tance to the inverse scattering problem. We have already men-

tioned one of these questions in connection with the Dirichlet

problem. Another is the following: Determine the compact set of
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far field patterns in L2[0,2ffl that corresponds to a fixed incident

field and wave number, but with (constant) surface impedance lying

in a given compact subset of the positive real axis. As opposed

to the problem answered by Theorem 2, this problem is complicated

by the fact that it is nonlinear. A similar problem can be posed

for 'A fixed but aD lying in a compact set of closed surfaces.

III. The Existence of T-1.

As we have already mentioned in the Introduction, the

exi.stence of T- I is equivalent to establishing the uniqueness of

solutions to the inverse scattering problem. We first consider

the inverse scattering problem of determining D from a knowledge

of ui and F where we assume that the boundary data is given by

(1.1c ) ([171).

Theorem 3: D is uniquely determined by a knowledge of the far

field pattern F for all angles 6 and k on any interval of the

positive real axis.

Proof: Suppose there existed two obstacles D1 and D2 having the

same far field pattern F. Consider first the case when -1 and

2 are disjoint. Then from the analyticity of solutions to the

Helmholtz equation, F uniquely determines u outside a disk

containing D1 and D in its interior and we can conclude by analy-

tic continuation that us is an entire solution of the Helmholtz

equation satisfying the radiation condition. But this impliesa I
that u8SO (151), i.e. from (l.lc') we have ui=O on aDI. Hence

ui is an eigenfunction of the Laplacian for an interval of k

values and this is a contradiction since the set of eigenvalues

for the Laplacian is discrete. A similar argument holds when
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D=D,nD 2 is nonempty, in particular by analytic continuation one

can show that the Laplacian defined in D1 \D or D2' \D has a contin-

uous spectrum, which is a contradiction.

We now consider the inverse scattering problem of deter-

mining A from a knowledge of ui , F and D, i.e. the boundarv value

problem is given by (l.la)-(l.ld). The following theorem is due

to Colton and Kirsch ([8]).

Theorem 4: A is uniquely determined by a knowledge of the far

field pattern F for all angles e and any fixed positive value of
the wave number k.

Proof: Let X1 and X2 be two solutions of the inverse scattering

problem corresponding to the same far field pattern F. Then by

analytic continuation we can conclude that u1=U2 and aul/3V =

au 2/D on 3D where uI and u2 are the solutions of (l.la)-(l.ld)

corresponding to X1 and A2 respectively. Then from the boundary

condition (l.lc) we have

(X1-X2 )ui = 0 on DD. (3.1)

We now note that uI is not identically zero in any neighborhood

ScaD since if this were the case (l.lc) implies that U/u3 v£0 in

2S and hence by Holmgren's uniqueness theorem ([3]) ul=0 in I \D.

But this is a contradiction since u i=u1  1 and us satisfies the

* radiation condition but ui does not. Therefore if xE3D there

exists a seauence of points xn4x such that Ul(Xn)#0. From (3.1)

we have that A1(Xn)=A2 (Xn) and since X1 and A2 are assumed to be

continuous we have X1 (x)=A2 (x). Since x is an arbitrary point on

3D this completes the proof of the theorem.



We note that from Theorem 1 and the identity theorem for

analytic functions, it suffices in Theorem 3 and Theorem 4 to

assume that F is only known for an interval of 6 values contained

in [0,2,] instead of for all values of 6 in [0,27].

An open problem of considerable interest is to determine

the validity of the above theorems if instead of the far field

pattern we are given the scattering cross section a defined by

a(k;t) = 1 IF( ;k') 12de (3.2)
0

where F(e;k,a) is the far field pattern corresponding to the

incoming plane wave u =exp(ikx.t).

IV. The operator "-1

As pointed out in the Introduction, the inverse scattering

problems we are considering in this paper nre improperly, posed in

the sense that in general no solution exists and if a solution

does exist it does not depend continuously on the initial data.

Hence a major task in a satisfactory treatment of these problems

is to restore stability. We shall accomplish this by assuming

extra a priori information is available concerning the unknown

impedance or scattering obstacle such that it is possible to con-

clude that the exact far field pattern lies in a compact set

XcR(T). We shall then show that it is possible to define an
2A

operator T defined on L2[0,27] such that T-=T-1 on X and T -

is continuous on L2 [0,21l, thus restoring the continuous dependence

of A or D on the far field pattern. At this point we would like

to mention that the term "a priori information" is not meant to

* imply that such information is impossible to obtain from experimental
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data, but only that this (in general nonstandard) information is

sufficient to stabilize the problem under consideration.

We first consider the problem of determining the impedance

A from a knowledge of the far field pattern F where the incident

wave ui and the scattering obstacle are assumed known (81). By

using the compactness of the operators K1 and K2 in (22) it is

possible to show that the mapping T:A-F is continuous and in parti-

cular if is the solution of the integral eauation (2.2) we can

write F=F(8;O,A) where F is a continuous function of e,p and X.

Now let FEL 2(0,2w] be the measured far field pattern. Then we

can reformulate our inverse scattering problem as an optimization

problem, denoted by Pf, as follows: Minimize

Cf( ,lx) f IF(e;0,A)-f(6) 12do (4.1)

subject to being a solution of (2.2) and AEU where U is a

"control set" to be specified shortly. We first note the following

facts:

(1) The set U contains the a priori information we are

assuming about X."*
(2) If X eU is a solution of the inverse scattering problem

for a given far field pattern f and 0 is the corresponding

density, then (0*,*) is a solution of Pf since Cf(,x )=O.

(3) If (0 ) is a solution of Pf and Cf(0 , )=O then

is a solution of the inverse scattering problem. If

Cf(0 , )>O then the inverse scattering problem is not

solvable for A eU, but X is a best approximation in the

sense that F-f is minimal.IL [0,2 i m
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We now define our control set U in such a way that Pf

has a solution. In particular let

U = {EC ,(D)_:IX(X) HM11!A(x)-X(Y) .M2 1x--yIa

where C+ (3D) is the cone in C(OD) consisting of all continuous

functions X defined on aD such that X>O, and MI, M2 and a,O<a<l,

are fixed constants. The Arzela-Ascoli Theorem implies that U

is compact in C(OD) and since the functional Cf is continuous

we have the following theorem:

Theorem 5: Let fEL 2 [0,27r]. The Pf has a solution.

In general the solution of Pf is not unicue. Let 0 (f)
* *

be the set of all solutions (0 ,X ) of Pf* Then the compactness

of U and the continuity of T implies the following result on

continuous dependence:

2!
Theorem 6: If fn-f in L [0,2r], (0n ,X)Xn (fn), then there

exists a convergent subsequence of {(cn n and every limit point

lies in ( (f).

Note that if Pf is uniquely solvable, i.e. D (f) is a

single ordered pair (c*,\*), then Theorem 6 simply says that

f-'(O ,A ) is a continuous mapping from L2(0,21T] into C(BD)xU.

In particular the operator T-:f-(o ,A*), feTU=X satisfies the
conditions on T-I as set forth in the opening paragraph of this

section. If Pf is not uniquely solvable then we must interpret

T-i as a set valued mapping and the criteria on T-1 as set out

i . . .. .
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in 'his opening paragraph must be modified in an obvious manner.

For the extension of the above results to the case of the

inverse scattering problem for electromagnetic waves see [121.

The inverse scattering problem of determining the shape

of a "soft" scattering obstacle from a knowledge of the far field

pattern can be handled in a similar manner as the inverse impedance

problem provided we can define an appropriate compact family of

surfaces U. This problem was discussed in [7] where the set U

consisted of those domains D contained in a fixed circular annulus

such that DD has a uniformly bounded H61der continuous tangent.

In the case of the three dimensional inverse scattering problem

it was also necessary to assume that D was starlike with respect

to the origin ([11).

In closing we mention that although we have succeeded in

using a priori information to stabilize the inverse scattering

problem, we have made no statement on the type of continuity

that results (i.e. Lipschitz, H81der, logarithmic, etc.). This

is an important problem that remains to be investigated since if

the continuity is too weak there is little hope of using the

optimization problem in a constructive fashion to actually deter-

mine X or D. For a discussion of this point in the case of

linear inverse scattering problems we refer the reader to (2].

A-1

V. Constructive Methods for Determining Tx,xETU.

The previous section shows that the inverse scattering

problems we are considering in this paper can be reformulated as

constrained, nonlinear optimization problems. The numerical
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solution of these optimization problems is presently being

investigated by A. Kirsch ((161). Related approaches have been

previously considered by A. Roger ([181) and B. Sleeman ([19]).

Needless to say there are many open problems connected with such

a numerical approach, particularly in connection with the questions

of stability and convergence.

The computational problems associated with computing

Tx ,X ETU, are considerably simplified if one has access to low

frequency data. We first briefly consider the problem of deter-

mining the surface impedance of an obstacle from low frequency

far field data ([61, [21]). Let F be the far field pattern

arising from the addition cf the scattered waves corresponding

to two incoming plane waves striking the obstacle from opposite

directions. If we expand F in its Fourier series

F(e;k) = Z an (k)e (5 1

n = - ao

then the (weighted) low frequency limit of the coefficient an (k)

determine a sequence of numbers bn from which we can define the

harmonic function

h(x) = b rle . (5.2)
n

It can be shown that the series (5.2) converges for r>a where

a is the radius of a disk containing the scattering obstacle

in its interior. From [6] we now have that the unknown impedance

X is the solution of the integral equation of the first kind

h(x) = f (y)N(x,y)ds(y) ;x= a (5.3)

aD
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where N denotes the Neumann function for Laplace's equation in

the exterior of D. Since F is assumed to be only approximately

known, the computation of the coefficients bn (InI<N for some

positive integer N) must be done through the use of regularization

procedures. In particular the left hand side of (5.3) is not

known exactly and the problem of solving (5.3) is hence improperly

posed. However stabilization can be achieved by assuming a priori

that XEU, in agreement with the results of the previous section.

A similar precedure can be used to determine the shape of

a soft scattering obstacle from a knowledge of the far field

pattern at low values of the frequency ([3], [91). This method

is based on relating the low frequency limit of the Fourier coeffi-

cients of the far field pattern to the coefficients of the Laurent

expansion of the (unique) analytic function f that conformally

maps the exterior of the unit disk onto the (unknown) scattering

obstacle such that at infinity f has the Laurent expansion

a1 a2
f(w) = aw + ao + ii- + -2 +... (5.4)

w

where a>O is the mapping radius. In particular if pn denotes

the (weighted) low frequency limit of the Fourier coefficients

then the Vn are related to the an by a relation of the form
n1 n

n-1
n - 21rn a an 1 + lower order coefficients, (5.5)

for nml,2.,,,. where the mapping radius a can be determined from

experimental data. Furthermore, if the coefficients ao,al,...aN

are determined from (5.5) and fN is defined by
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f (w) = aw + a +- aN (5.6)
N 0 +- + + Nw

then from the Area Theorem in geometric function theory it is

possible to deduce the L-error estimate

,27T. 2
fo Nd - N+1*

Note that from (5.5) small values of a can cause large errors in

the computation of the coefficients an whereas large values of

a imply that the error estimate (5.7) is large. Hence in order

to achieve stability a must be bounded from above and below. This

will be guaranteed if D is known a priori to be contained in a

given annulus, in agreement with the results of the previous sec-

tion. Note however that the error estimate in this case is with

respect to the L2 norm instead of the pointwise estimates of

Section IV and hence it is not necessary to assume a priori that

DD has a uniformly bounded H61der continuous tangent. This suggests

the problem of examining the stability of the inverse scattering

problem where continuity is measured with respect to norms different

from the maximum norm and determining the appropriate compact sets

that are associated with these norms.

The above function-theoretic approach to the inverse

scattering problem of determining the shape of the scattering

obstacle from a knowledge of the far field pattern was first given

by Colton ([41) and Colton and Kleinman ([9]). Further develop-

ments of this method have subsequently been provided by Hariharan

([141), Sleeman ([20]), and Smith ([21]). A partially successful

attempt to extend this approach to the inverse scattering problem

in |3 has been given by Colton and Kress ([11]). The problem in
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this case is that instead of conformal mapping methods one must

rely on the use of level curves in potential theory and such an

approach yields much weaker results.

The discussion provided in this section obviously only

touches the surface of the computational problems inherent in

constructing approximate solutions to the inverse scattering

problem and it is hoped that the future will yield new developments

and insights in this direction. Indeed the effective numerical

solution of the inverse scattering problem is the basic open

problem in the field and is intimately linked to all of the pro-

blems we have previously mentioned. Our hope is that this paper

has indicated recent progress and possible new directions to a

sufficient extent to encourage others to enter this important and

fascinating area of research.
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